EEF1G and NUP85 |
eukaryotic translation elongation factor 1 gamma |
nucleoporin 85kDa |
- Translation
- Eukaryotic Translation Elongation
|
- Mitotic Prometaphase
- Separation of Sister Chromatids
- Mitotic Prophase
- HIV Infection
- Nuclear import of Rev protein
- Regulatory RNA pathways
- Rev-mediated nuclear export of HIV RNA
- Nuclear Envelope Breakdown
- Mitotic Anaphase
- SLC-mediated transmembrane transport
- M Phase
- Influenza Life Cycle
- HIV Life Cycle
- Influenza Viral RNA Transcription and Replication
- Rev-mediated nuclear export of HIV RNA
- Myoclonic epilepsy of Lafora
- Glycogen storage diseases
- Transcriptional regulation by small RNAs
- Vpr-mediated nuclear import of PICs
- ISG15 antiviral mechanism
- Interferon Signaling
- Host Interactions of HIV factors
- Regulation of Glucokinase by Glucokinase Regulatory Protein
- Nuclear Pore Complex (NPC) Disassembly
- Cytokine Signaling in Immune system
- Interactions of Vpr with host cellular proteins
- Interactions of Rev with host cellular proteins
- Influenza Infection
- Hexose transport
- Cell Cycle, Mitotic
- Late Phase of HIV Life Cycle
- Antiviral mechanism by IFN-stimulated genes
- Resolution of Sister Chromatid Cohesion
- Viral Messenger RNA Synthesis
- Metabolism of carbohydrates
- Glucose transport
- Mitotic Metaphase and Anaphase
|
|
|
|
|
EEF1G and RPS28 |
eukaryotic translation elongation factor 1 gamma |
ribosomal protein S28 |
- Translation
- Eukaryotic Translation Elongation
|
- Nonsense-Mediated Decay (NMD)
- Translation initiation complex formation
- Translation
- SRP-dependent cotranslational protein targeting to membrane
- Eukaryotic Translation Termination
- Peptide chain elongation
- Influenza Infection
- Viral mRNA Translation
- L13a-mediated translational silencing of Ceruloplasmin expression
- Influenza Life Cycle
- Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC)
- Ribosomal scanning and start codon recognition
- Formation of the ternary complex, and subsequently, the 43S complex
- Influenza Viral RNA Transcription and Replication
- GTP hydrolysis and joining of the 60S ribosomal subunit
- Eukaryotic Translation Initiation
- Activation of the mRNA upon binding of the cap-binding complex and eIFs, and subsequent binding to 43S
- Formation of a pool of free 40S subunits
- Eukaryotic Translation Elongation
- Cap-dependent Translation Initiation
- Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC)
|
|
|
|
|
EGFR and HSPA1A |
epidermal growth factor receptor |
heat shock 70kDa protein 1A |
- Signaling by the B Cell Receptor (BCR)
- Signaling by GPCR
- Signaling by FGFR in disease
- Signaling by EGFRvIII in Cancer
- PLCG1 events in ERBB2 signaling
- SHC1 events in ERBB2 signaling
- Signaling by SCF-KIT
- DAP12 signaling
- Downstream signaling events of B Cell Receptor (BCR)
- Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants
- PI3K/AKT activation
- PI-3K cascade
- Gastrin-CREB signalling pathway via PKC and MAPK
- Signaling by PDGF
- EGFR downregulation
- DAP12 interactions
- GAB1 signalosome
- GRB2 events in EGFR signaling
- Signaling by ERBB4
- Constitutive PI3K/AKT Signaling in Cancer
- Role of LAT2/NTAL/LAB on calcium mobilization
- PI3K events in ERBB4 signaling
- EGFR interacts with phospholipase C-gamma
- Signaling by ERBB2
- Signaling by EGFR
- Downstream signal transduction
- Signaling by EGFR in Cancer
- Fc epsilon receptor (FCERI) signaling
- PI3K/AKT Signaling in Cancer
- Adaptive Immune System
- Axon guidance
- PIP3 activates AKT signaling
- L1CAM interactions
- EGFR Transactivation by Gastrin
- GRB2 events in ERBB2 signaling
- PI3K events in ERBB2 signaling
- Downstream signaling of activated FGFR
- Innate Immune System
- Signalling by NGF
- Signal transduction by L1
- Signaling by Ligand-Responsive EGFR Variants in Cancer
- NGF signalling via TRKA from the plasma membrane
- Signaling by Overexpressed Wild-Type EGFR in Cancer
- Inhibition of Signaling by Overexpressed EGFR
- Signaling by FGFR
- SHC1 events in EGFR signaling
- Constitutive Signaling by EGFRvIII
|
- Regulation of mRNA stability by proteins that bind AU-rich elements
- Viral RNP Complexes in the Host Cell Nucleus
- Attenuation phase
- Regulation of HSF1-mediated heat shock response
- Cellular response to heat stress
- AUF1 (hnRNP D0) destabilizes mRNA
- Influenza Infection
- Influenza Life Cycle
- HSF1-dependent transactivation
- Export of Viral Ribonucleoproteins from Nucleus
|
- Cetuximab
- Trastuzumab
- Lidocaine
- Gefitinib
- Erlotinib
- Lapatinib
- Panitumumab
- Flavopiridol
- Vandetanib
- S-{3-[(4-ANILINOQUINAZOLIN-6-YL)AMINO]-3-OXOPROPYL}-L-CYSTEINE
- N-[4-(3-BROMO-PHENYLAMINO)-QUINAZOLIN-6-YL]-ACRYLAMIDE
- Afatinib
|
|
|
|
EIF2S1 and EIF2AK2 |
eukaryotic translation initiation factor 2, subunit 1 alpha, 35kDa |
eukaryotic translation initiation factor 2-alpha kinase 2 |
- Translation initiation complex formation
- Recycling of eIF2:GDP
- Translation
- L13a-mediated translational silencing of Ceruloplasmin expression
- Ribosomal scanning and start codon recognition
- Formation of the ternary complex, and subsequently, the 43S complex
- GTP hydrolysis and joining of the 60S ribosomal subunit
- Eukaryotic Translation Initiation
- Activation of the mRNA upon binding of the cap-binding complex and eIFs, and subsequent binding to 43S
- Cap-dependent Translation Initiation
- PERK regulates gene expression
- Unfolded Protein Response (UPR)
|
- ISG15 antiviral mechanism
- Interferon Signaling
- Inhibition of PKR
- Cytokine Signaling in Immune system
- Host Interactions with Influenza Factors
- Influenza Infection
- NS1 Mediated Effects on Host Pathways
- Antiviral mechanism by IFN-stimulated genes
|
|
|
|
|
EIF5A and XPO1 |
eukaryotic translation initiation factor 5A |
exportin 1 |
- Post-translational protein modification
- Hypusine synthesis from eIF5A-lysine
- Gamma carboxylation, hypusine formation and arylsulfatase activation
|
- Loss of Function of TGFBR2 in Cancer
- Downregulation of TGF-beta receptor signaling
- SMAD2/3 MH2 Domain Mutants in Cancer
- Signaling by Wnt
- TGF-beta receptor signaling activates SMADs
- Influenza Life Cycle
- Export of Viral Ribonucleoproteins from Nucleus
- RNF mutants show enhanced WNT signaling and proliferation
- Regulation of mRNA stability by proteins that bind AU-rich elements
- TGFBR2 MSI Frameshift Mutants in Cancer
- SMAD2/3 Phosphorylation Motif Mutants in Cancer
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- Host Interactions of HIV factors
- Loss of Function of SMAD4 in Cancer
- TGFBR1 KD Mutants in Cancer
- Influenza Infection
- Late Phase of HIV Life Cycle
- Resolution of Sister Chromatid Cohesion
- Mitotic G2-G2/M phases
- Mitotic Metaphase and Anaphase
- Mitotic Prometaphase
- Separation of Sister Chromatids
- HIV Infection
- Rev-mediated nuclear export of HIV RNA
- G2/M Transition
- Mitotic Anaphase
- TGFBR1 LBD Mutants in Cancer
- HuR stabilizes mRNA
- deactivation of the beta-catenin transactivating complex
- M Phase
- HIV Life Cycle
- Rev-mediated nuclear export of HIV RNA
- Cyclin A/B1 associated events during G2/M transition
- XAV939 inhibits tankyrase, stabilizing AXIN
- NEP/NS2 Interacts with the Cellular Export Machinery
- Loss of Function of SMAD2/3 in Cancer
- TGFBR2 Kinase Domain Mutants in Cancer
- Interactions of Rev with host cellular proteins
- Cell Cycle, Mitotic
- Loss of Function of TGFBR1 in Cancer
- Signaling by TGF-beta Receptor Complex
- Signaling by TGF-beta Receptor Complex in Cancer
- TCF dependent signaling in response to WNT
- Signaling by WNT in cancer
- SMAD4 MH2 Domain Mutants in Cancer
|
|
|
|
|
EIF5A and RPL5 |
eukaryotic translation initiation factor 5A |
ribosomal protein L5 |
- Post-translational protein modification
- Hypusine synthesis from eIF5A-lysine
- Gamma carboxylation, hypusine formation and arylsulfatase activation
|
- Nonsense-Mediated Decay (NMD)
- Translation
- SRP-dependent cotranslational protein targeting to membrane
- Eukaryotic Translation Termination
- Peptide chain elongation
- Influenza Infection
- Viral mRNA Translation
- L13a-mediated translational silencing of Ceruloplasmin expression
- Influenza Life Cycle
- Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC)
- Influenza Viral RNA Transcription and Replication
- GTP hydrolysis and joining of the 60S ribosomal subunit
- Eukaryotic Translation Initiation
- Formation of a pool of free 40S subunits
- Eukaryotic Translation Elongation
- Cap-dependent Translation Initiation
- Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC)
|
|
|
|
|
SERPINB1 and XPO1 |
serpin peptidase inhibitor, clade B (ovalbumin), member 1 |
exportin 1 |
|
- Loss of Function of TGFBR2 in Cancer
- Downregulation of TGF-beta receptor signaling
- SMAD2/3 MH2 Domain Mutants in Cancer
- Signaling by Wnt
- TGF-beta receptor signaling activates SMADs
- Influenza Life Cycle
- Export of Viral Ribonucleoproteins from Nucleus
- RNF mutants show enhanced WNT signaling and proliferation
- Regulation of mRNA stability by proteins that bind AU-rich elements
- TGFBR2 MSI Frameshift Mutants in Cancer
- SMAD2/3 Phosphorylation Motif Mutants in Cancer
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- Host Interactions of HIV factors
- Loss of Function of SMAD4 in Cancer
- TGFBR1 KD Mutants in Cancer
- Influenza Infection
- Late Phase of HIV Life Cycle
- Resolution of Sister Chromatid Cohesion
- Mitotic G2-G2/M phases
- Mitotic Metaphase and Anaphase
- Mitotic Prometaphase
- Separation of Sister Chromatids
- HIV Infection
- Rev-mediated nuclear export of HIV RNA
- G2/M Transition
- Mitotic Anaphase
- TGFBR1 LBD Mutants in Cancer
- HuR stabilizes mRNA
- deactivation of the beta-catenin transactivating complex
- M Phase
- HIV Life Cycle
- Rev-mediated nuclear export of HIV RNA
- Cyclin A/B1 associated events during G2/M transition
- XAV939 inhibits tankyrase, stabilizing AXIN
- NEP/NS2 Interacts with the Cellular Export Machinery
- Loss of Function of SMAD2/3 in Cancer
- TGFBR2 Kinase Domain Mutants in Cancer
- Interactions of Rev with host cellular proteins
- Cell Cycle, Mitotic
- Loss of Function of TGFBR1 in Cancer
- Signaling by TGF-beta Receptor Complex
- Signaling by TGF-beta Receptor Complex in Cancer
- TCF dependent signaling in response to WNT
- Signaling by WNT in cancer
- SMAD4 MH2 Domain Mutants in Cancer
|
|
|
|
|
ELAVL1 and KPNA1 |
ELAV like RNA binding protein 1 |
karyopherin alpha 1 (importin alpha 5) |
- Regulation of mRNA stability by proteins that bind AU-rich elements
- HuR stabilizes mRNA
|
- Vpr-mediated nuclear import of PICs
- ISG15 antiviral mechanism
- HIV Infection
- Host Interactions of HIV factors
- Interferon Signaling
- Apoptotic execution phase
- Integration of provirus
- Cytokine Signaling in Immune system
- Interactions of Vpr with host cellular proteins
- Influenza Infection
- Antiviral mechanism by IFN-stimulated genes
- Early Phase of HIV Life Cycle
- Influenza Life Cycle
- HIV Life Cycle
- Activation of DNA fragmentation factor
- Transport of Ribonucleoproteins into the Host Nucleus
- Apoptosis induced DNA fragmentation
- Programmed Cell Death
|
|
|
|
|
ELAVL1 and KPNB1 |
ELAV like RNA binding protein 1 |
karyopherin (importin) beta 1 |
- Regulation of mRNA stability by proteins that bind AU-rich elements
- HuR stabilizes mRNA
|
- Metabolism of lipids and lipoproteins
- ISG15 antiviral mechanism
- Nuclear import of Rev protein
- HIV Infection
- Interferon Signaling
- Apoptotic execution phase
- Host Interactions of HIV factors
- Cytokine Signaling in Immune system
- Interactions of Rev with host cellular proteins
- Influenza Infection
- Antiviral mechanism by IFN-stimulated genes
- Influenza Life Cycle
- Regulation of cholesterol biosynthesis by SREBP (SREBF)
- Activation of DNA fragmentation factor
- Transport of Ribonucleoproteins into the Host Nucleus
- Apoptosis induced DNA fragmentation
- Programmed Cell Death
|
|
|
|
|
ELF2 and EIF2AK2 |
E74-like factor 2 (ets domain transcription factor) |
eukaryotic translation initiation factor 2-alpha kinase 2 |
|
- ISG15 antiviral mechanism
- Interferon Signaling
- Inhibition of PKR
- Cytokine Signaling in Immune system
- Host Interactions with Influenza Factors
- Influenza Infection
- NS1 Mediated Effects on Host Pathways
- Antiviral mechanism by IFN-stimulated genes
|
|
|
|
|
ELF5 and RPS15A |
E74-like factor 5 (ets domain transcription factor) |
ribosomal protein S15a |
|
- Nonsense-Mediated Decay (NMD)
- Translation initiation complex formation
- Translation
- SRP-dependent cotranslational protein targeting to membrane
- Eukaryotic Translation Termination
- Peptide chain elongation
- Influenza Infection
- Viral mRNA Translation
- L13a-mediated translational silencing of Ceruloplasmin expression
- Influenza Life Cycle
- Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC)
- Ribosomal scanning and start codon recognition
- Formation of the ternary complex, and subsequently, the 43S complex
- Influenza Viral RNA Transcription and Replication
- GTP hydrolysis and joining of the 60S ribosomal subunit
- Eukaryotic Translation Initiation
- Activation of the mRNA upon binding of the cap-binding complex and eIFs, and subsequent binding to 43S
- Formation of a pool of free 40S subunits
- Eukaryotic Translation Elongation
- Cap-dependent Translation Initiation
- Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC)
|
|
|
|
|
EMX1 and POLR2D |
empty spiracles homeobox 1 |
polymerase (RNA) II (DNA directed) polypeptide D |
|
- RNA Polymerase II Promoter Escape
- mRNA Splicing
- Formation of HIV-1 elongation complex containing HIV-1 Tat
- PIWI-interacting RNA (piRNA) biogenesis
- Nucleotide Excision Repair
- RNA Polymerase II Transcription Pre-Initiation And Promoter Opening
- RNA Polymerase II Transcription
- Abortive elongation of HIV-1 transcript in the absence of Tat
- HIV Infection
- Regulatory RNA pathways
- Formation of the Early Elongation Complex
- Tat-mediated elongation of the HIV-1 transcript
- Tat-mediated HIV elongation arrest and recovery
- Formation of transcription-coupled NER (TC-NER) repair complex
- RNA Pol II CTD phosphorylation and interaction with CE
- RNA Polymerase II Pre-transcription Events
- Dual incision reaction in TC-NER
- Influenza Life Cycle
- HIV elongation arrest and recovery
- HIV Life Cycle
- HIV Transcription Initiation
- Influenza Viral RNA Transcription and Replication
- RNA Pol II CTD phosphorylation and interaction with CE
- Transcriptional regulation of pluripotent stem cells
- RNA Polymerase II HIV Promoter Escape
- HIV Transcription Elongation
- POU5F1 (OCT4), SOX2, NANOG activate genes related to proliferation
- Transcriptional regulation by small RNAs
- Processing of Capped Intron-Containing Pre-mRNA
- mRNA Capping
- mRNA Splicing - Minor Pathway
- mRNA Splicing - Major Pathway
- MicroRNA (miRNA) biogenesis
- Influenza Infection
- Pausing and recovery of Tat-mediated HIV elongation
- Late Phase of HIV Life Cycle
- Formation of RNA Pol II elongation complex
- RNA Polymerase II Transcription Initiation And Promoter Clearance
- Pausing and recovery of HIV elongation
- Formation of HIV elongation complex in the absence of HIV Tat
- Transcription-coupled NER (TC-NER)
- Viral Messenger RNA Synthesis
- Formation of the HIV-1 Early Elongation Complex
- RNA Polymerase II Transcription Initiation
- Transcription of the HIV genome
- RNA Polymerase II Transcription Elongation
|
|
|
|
|
ENG and TGFB1 |
endoglin |
transforming growth factor, beta 1 |
|
- Loss of Function of TGFBR2 in Cancer
- Elastic fibre formation
- Downregulation of TGF-beta receptor signaling
- SMAD2/3 MH2 Domain Mutants in Cancer
- Platelet degranulation
- TGF-beta receptor signaling activates SMADs
- Host Interactions with Influenza Factors
- TGFBR1 LBD Mutants in Cancer
- Influenza Virus Induced Apoptosis
- Molecules associated with elastic fibres
- ECM proteoglycans
- Response to elevated platelet cytosolic Ca2+
- Transcriptional regulation of white adipocyte differentiation
- TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition)
- TGFBR2 MSI Frameshift Mutants in Cancer
- SMAD2/3 Phosphorylation Motif Mutants in Cancer
- Loss of Function of SMAD2/3 in Cancer
- TGFBR2 Kinase Domain Mutants in Cancer
- Loss of Function of SMAD4 in Cancer
- TGFBR1 KD Mutants in Cancer
- Non-integrin membrane-ECM interactions
- Influenza Infection
- Loss of Function of TGFBR1 in Cancer
- Syndecan interactions
- Signaling by TGF-beta Receptor Complex in Cancer
- Signaling by TGF-beta Receptor Complex
- Platelet activation, signaling and aggregation
- SMAD4 MH2 Domain Mutants in Cancer
|
|
|
|
|
EP300 and RPL27 |
E1A binding protein p300 |
ribosomal protein L27 |
- Signaling by NOTCH1 HD Domain Mutants in Cancer
- Metabolism of lipids and lipoproteins
- Signaling by Wnt
- NOTCH2 intracellular domain regulates transcription
- Regulation of gene expression by Hypoxia-inducible Factor
- Signaling by NOTCH1 t(7;9)(NOTCH1:M1580_K2555) Translocation Mutant
- Signaling by NOTCH2
- Pre-NOTCH Transcription and Translation
- RNF mutants show enhanced WNT signaling and proliferation
- Signaling by NOTCH1 in Cancer
- Chromatin organization
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- Signaling by NOTCH
- formation of the beta-catenin:TCF transactivating complex
- Factors involved in megakaryocyte development and platelet production
- Chromatin modifying enzymes
- LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production
- Signaling by NOTCH1 PEST Domain Mutants in Cancer
- Mitotic G2-G2/M phases
- Constitutive Signaling by NOTCH1 PEST Domain Mutants
- PPARA activates gene expression
- Cellular response to hypoxia
- Regulation of Hypoxia-inducible Factor (HIF) by oxygen
- Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer
- Attenuation phase
- G2/M Transition
- HATs acetylate histones
- RORA activates circadian gene expression
- HSF1-dependent transactivation
- TRAF3-dependent IRF activation pathway
- Signaling by NOTCH1
- Transcriptional regulation of white adipocyte differentiation
- XAV939 inhibits tankyrase, stabilizing AXIN
- Pre-NOTCH Expression and Processing
- Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants
- FBXW7 Mutants and NOTCH1 in Cancer
- Innate Immune System
- Fatty acid, triacylglycerol, and ketone body metabolism
- Cytosolic sensors of pathogen-associated DNA
- Cellular response to heat stress
- REV-ERBA represses gene expression
- Cell Cycle, Mitotic
- RIG-I/MDA5 mediated induction of IFN-alpha/beta pathways
- NOTCH1 Intracellular Domain Regulates Transcription
- TCF dependent signaling in response to WNT
- TRAF6 mediated IRF7 activation
- Regulation of lipid metabolism by Peroxisome proliferator-activated receptor alpha (PPARalpha)
- Signaling by WNT in cancer
- BMAL1:CLOCK,NPAS2 activates circadian gene expression
- Polo-like kinase mediated events
|
- Nonsense-Mediated Decay (NMD)
- Translation
- SRP-dependent cotranslational protein targeting to membrane
- Eukaryotic Translation Termination
- Peptide chain elongation
- Influenza Infection
- Viral mRNA Translation
- L13a-mediated translational silencing of Ceruloplasmin expression
- Influenza Life Cycle
- Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC)
- Influenza Viral RNA Transcription and Replication
- GTP hydrolysis and joining of the 60S ribosomal subunit
- Eukaryotic Translation Initiation
- Formation of a pool of free 40S subunits
- Eukaryotic Translation Elongation
- Cap-dependent Translation Initiation
- Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC)
|
|
|
|
|
EP300 and RAN |
E1A binding protein p300 |
RAN, member RAS oncogene family |
- Signaling by NOTCH1 HD Domain Mutants in Cancer
- Metabolism of lipids and lipoproteins
- Signaling by Wnt
- NOTCH2 intracellular domain regulates transcription
- Regulation of gene expression by Hypoxia-inducible Factor
- Signaling by NOTCH1 t(7;9)(NOTCH1:M1580_K2555) Translocation Mutant
- Signaling by NOTCH2
- Pre-NOTCH Transcription and Translation
- RNF mutants show enhanced WNT signaling and proliferation
- Signaling by NOTCH1 in Cancer
- Chromatin organization
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- Signaling by NOTCH
- formation of the beta-catenin:TCF transactivating complex
- Factors involved in megakaryocyte development and platelet production
- Chromatin modifying enzymes
- LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production
- Signaling by NOTCH1 PEST Domain Mutants in Cancer
- Mitotic G2-G2/M phases
- Constitutive Signaling by NOTCH1 PEST Domain Mutants
- PPARA activates gene expression
- Cellular response to hypoxia
- Regulation of Hypoxia-inducible Factor (HIF) by oxygen
- Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer
- Attenuation phase
- G2/M Transition
- HATs acetylate histones
- RORA activates circadian gene expression
- HSF1-dependent transactivation
- TRAF3-dependent IRF activation pathway
- Signaling by NOTCH1
- Transcriptional regulation of white adipocyte differentiation
- XAV939 inhibits tankyrase, stabilizing AXIN
- Pre-NOTCH Expression and Processing
- Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants
- FBXW7 Mutants and NOTCH1 in Cancer
- Innate Immune System
- Fatty acid, triacylglycerol, and ketone body metabolism
- Cytosolic sensors of pathogen-associated DNA
- Cellular response to heat stress
- REV-ERBA represses gene expression
- Cell Cycle, Mitotic
- RIG-I/MDA5 mediated induction of IFN-alpha/beta pathways
- NOTCH1 Intracellular Domain Regulates Transcription
- TCF dependent signaling in response to WNT
- TRAF6 mediated IRF7 activation
- Regulation of lipid metabolism by Peroxisome proliferator-activated receptor alpha (PPARalpha)
- Signaling by WNT in cancer
- BMAL1:CLOCK,NPAS2 activates circadian gene expression
- Polo-like kinase mediated events
|
- Transcriptional regulation by small RNAs
- Metabolism of lipids and lipoproteins
- Nuclear import of Rev protein
- HIV Infection
- Regulatory RNA pathways
- Rev-mediated nuclear export of HIV RNA
- Host Interactions of HIV factors
- MicroRNA (miRNA) biogenesis
- Influenza Infection
- Interactions of Rev with host cellular proteins
- Late Phase of HIV Life Cycle
- Influenza Life Cycle
- Regulation of cholesterol biosynthesis by SREBP (SREBF)
- Export of Viral Ribonucleoproteins from Nucleus
- HIV Life Cycle
- Rev-mediated nuclear export of HIV RNA
- NEP/NS2 Interacts with the Cellular Export Machinery
|
|
|
|
|
EPAS1 and HSP90AA1 |
endothelial PAS domain protein 1 |
heat shock protein 90kDa alpha (cytosolic), class A member 1 |
- Cellular response to hypoxia
- Transcriptional regulation of pluripotent stem cells
- Regulation of Hypoxia-inducible Factor (HIF) by oxygen
- Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha
- Regulation of gene expression by Hypoxia-inducible Factor
|
- HSF1 activation
- Regulatory RNA pathways
- Signaling by EGFRvIII in Cancer
- Regulation of PLK1 Activity at G2/M Transition
- Influenza Life Cycle
- Influenza Viral RNA Transcription and Replication
- Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants
- Uptake and actions of bacterial toxins
- EPH-Ephrin signaling
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation
- Fcgamma receptor (FCGR) dependent phagocytosis
- Recruitment of mitotic centrosome proteins and complexes
- Regulation of actin dynamics for phagocytic cup formation
- vRNP Assembly
- Influenza Infection
- Signaling by ERBB2
- Signaling by VEGF
- Signaling by EGFR in Cancer
- Sema3A PAK dependent Axon repulsion
- Mitotic G2-G2/M phases
- Uptake and function of diphtheria toxin
- PIWI-interacting RNA (piRNA) biogenesis
- Organelle biogenesis and maintenance
- Axon guidance
- Attenuation phase
- G2/M Transition
- VEGFA-VEGFR2 Pathway
- HSF1-dependent transactivation
- EPHA-mediated growth cone collapse
- Metabolism of nitric oxide
- VEGFR2 mediated vascular permeability
- Loss of Nlp from mitotic centrosomes
- Scavenging by Class F Receptors
- eNOS activation and regulation
- Innate Immune System
- Semaphorin interactions
- Signaling by Ligand-Responsive EGFR Variants in Cancer
- Assembly of the primary cilium
- Cellular response to heat stress
- Anchoring of the basal body to the plasma membrane
- Cell Cycle, Mitotic
- eNOS activation
- Loss of proteins required for interphase microtubule organization from the centrosome
- Centrosome maturation
- Constitutive Signaling by EGFRvIII
|
|
- Rifabutin
- Nedocromil
- 9-Butyl-8-(2,5-Dimethoxy-Benzyl)-9h-Purin-6-Ylamine
- Geldanamycin
- 8-(2-Chloro-3,4,5-Trimethoxy-Benzyl)-2-Fluoro-9-Pent-4-Ylnyl-9h-Purin-6-Ylamine
- 9-Butyl-8-(3,4,5-Trimethoxybenzyl)-9h-Purin-6-Amine
- 4-(1,3-Benzodioxol-5-Yl)-5-(5-Ethyl-2,4-Dihydroxyphenyl)-2h-Pyrazole-3-Carboxylic Acid
- 17-Dmag
- 8-(2,5-Dimethoxy-Benzyl)-2-Fluoro-9h-Purin-6-Ylamine
- 8-(2,5-Dimethoxy-Benzyl)-2-Fluoro-9-Pent-9h-Purin-6-Ylamine
- Adenosine-5\'-Diphosphate
- 9-Butyl-8-(2-Chloro-3,4,5-Trimethoxy-Benzyl)-9h-Purin-6-Ylamine
- 4-(1h-Imidazol-4-Yl)-3-(5-Ethyl-2,4-Dihydroxy-Phenyl)-1h-Pyrazole
- 9-Butyl-8-(3-Methoxybenzyl)-9h-Purin-6-Amine
- 9-Butyl-8-(4-Methoxybenzyl)-9h-Purin-6-Amine
- 9-Butyl-8-(2,5-Dimethoxy-Benzyl)-2-Fluoro-9h-Purin-6-Ylamine
- 8-Benzo[1,3]Dioxol-,5-Ylmethyl-9-Butyl-2-Fluoro-9h-Purin-6-Ylamine
- 8-(2-Chloro-3,4,5-Trimethoxy-Benzyl)-9-Pent-4-Ylnyl-9h-Purin-6-Ylamine
- N-[4-(AMINOSULFONYL)BENZYL]-5-(5-CHLORO-2,4-DIHYDROXYPHENYL)-1H-PYRAZOLE-4-CARBOXAMIDE
- N-(4-ACETYLPHENYL)-5-(5-CHLORO-2,4-DIHYDROXYPHENYL)-1H-PYRAZOLE-4-CARBOXAMIDE
- 4-CHLORO-6-(4-{4-[4-(METHYLSULFONYL)BENZYL]PIPERAZIN-1-YL}-1H-PYRAZOL-5-YL)BENZENE-1,3-DIOL
- 5-(5-CHLORO-2,4-DIHYDROXYPHENYL)-N-ETHYL-4-PIPERAZIN-1-YL-1H-PYRAZOLE-3-CARBOXAMIDE
- 5-(5-chloro-2,4-dihydroxyphenyl)-N-ethyl-4-[4-(morpholin-4-ylmethyl)phenyl]isoxazole-3-carboxamide
- 5-(5-CHLORO-2,4-DIHYDROXYPHENYL)-N-ETHYL-4-(4-METHOXYPHENYL)ISOXAZOLE-3-CARBOXAMIDE
- 2-amino-4-[2,4-dichloro-5-(2-pyrrolidin-1-ylethoxy)phenyl]-N-ethylthieno[2,3-d]pyrimidine-6-carboxamide
- 4-CHLORO-6-(4-PIPERAZIN-1-YL-1H-PYRAZOL-5-YL)BENZENE-1,3-DIOL
- (3E)-3-[(phenylamino)methylidene]dihydrofuran-2(3H)-one
- 6-(3-BROMO-2-NAPHTHYL)-1,3,5-TRIAZINE-2,4-DIAMINE
- 3-({2-[(2-AMINO-6-METHYLPYRIMIDIN-4-YL)ETHYNYL]BENZYL}AMINO)-1,3-OXAZOL-2(3H)-ONE
- N-[(2-AMINO-6-METHYLPYRIMIDIN-4-YL)METHYL]-3-{[(E)-(2-OXODIHYDROFURAN-3(2H)-YLIDENE)METHYL]AMINO}BENZENESULFONAMIDE
- 5-(5-CHLORO-2,4-DIHYDROXYPHENYL)-N-ETHYL-4-(4-METHOXYPHENYL)-1H-PYRAZOLE-3-CARBOXAMIDE
- 4-bromo-6-(6-hydroxy-1,2-benzisoxazol-3-yl)benzene-1,3-diol
- 4-[4-(2,3-DIHYDRO-1,4-BENZODIOXIN-6-YL)-3-METHYL-1H-PYRAZOL-5-YL]-6-ETHYLBENZENE-1,3-DIOL
- 4-chloro-6-{5-[(2-morpholin-4-ylethyl)amino]-1,2-benzisoxazol-3-yl}benzene-1,3-diol
- 8-(6-BROMO-BENZO[1,3]DIOXOL-5-YLSULFANYL)-9-(3-ISOPROPYLAMINO-PROPYL)-ADENINE
- 4-methyl-7,8-dihydro-5H-thiopyrano[4,3-d]pyrimidin-2-amine
- (5E,7S)-2-amino-7-(4-fluoro-2-pyridin-3-ylphenyl)-4-methyl-7,8-dihydroquinazolin-5(6H)-one oxime
- 8-BENZO[1,3]DIOXOL-,5-YLMETHYL-9-BUTYL-9H-
- 4-{[(2R)-2-(2-methylphenyl)pyrrolidin-1-yl]carbonyl}benzene-1,3-diol
- 2-(1H-pyrrol-1-ylcarbonyl)benzene-1,3,5-triol
- 2-[(2-methoxyethyl)amino]-4-(4-oxo-1,2,3,4-tetrahydro-9H-carbazol-9-yl)benzamide
- 4-(2-methoxyethoxy)-6-methylpyrimidin-2-amine
- 4-(2,4-dichlorophenyl)-5-phenyldiazenyl-pyrimidin-2-amine
- 3,6-DIAMINO-5-CYANO-4-(4-ETHOXYPHENYL)THIENO[2,3-B]PYRIDINE-2-CARBOXAMIDE
- 2-AMINO-4-(2,4-DICHLOROPHENYL)-N-ETHYLTHIENO[2,3-D]PYRIMIDINE-6-CARBOXAMIDE
|
|
|
STOM and RPL13A |
stomatin |
ribosomal protein L13a |
|
- Nonsense-Mediated Decay (NMD)
- Translation
- SRP-dependent cotranslational protein targeting to membrane
- Eukaryotic Translation Termination
- Peptide chain elongation
- Influenza Infection
- Viral mRNA Translation
- L13a-mediated translational silencing of Ceruloplasmin expression
- Influenza Life Cycle
- Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC)
- Influenza Viral RNA Transcription and Replication
- GTP hydrolysis and joining of the 60S ribosomal subunit
- Eukaryotic Translation Initiation
- Formation of a pool of free 40S subunits
- Eukaryotic Translation Elongation
- Cap-dependent Translation Initiation
- Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC)
|
|
|
|
|
EPRS and HSP90AA1 |
glutamyl-prolyl-tRNA synthetase |
heat shock protein 90kDa alpha (cytosolic), class A member 1 |
- Cytosolic tRNA aminoacylation
- tRNA Aminoacylation
|
- HSF1 activation
- Regulatory RNA pathways
- Signaling by EGFRvIII in Cancer
- Regulation of PLK1 Activity at G2/M Transition
- Influenza Life Cycle
- Influenza Viral RNA Transcription and Replication
- Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants
- Uptake and actions of bacterial toxins
- EPH-Ephrin signaling
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation
- Fcgamma receptor (FCGR) dependent phagocytosis
- Recruitment of mitotic centrosome proteins and complexes
- Regulation of actin dynamics for phagocytic cup formation
- vRNP Assembly
- Influenza Infection
- Signaling by ERBB2
- Signaling by VEGF
- Signaling by EGFR in Cancer
- Sema3A PAK dependent Axon repulsion
- Mitotic G2-G2/M phases
- Uptake and function of diphtheria toxin
- PIWI-interacting RNA (piRNA) biogenesis
- Organelle biogenesis and maintenance
- Axon guidance
- Attenuation phase
- G2/M Transition
- VEGFA-VEGFR2 Pathway
- HSF1-dependent transactivation
- EPHA-mediated growth cone collapse
- Metabolism of nitric oxide
- VEGFR2 mediated vascular permeability
- Loss of Nlp from mitotic centrosomes
- Scavenging by Class F Receptors
- eNOS activation and regulation
- Innate Immune System
- Semaphorin interactions
- Signaling by Ligand-Responsive EGFR Variants in Cancer
- Assembly of the primary cilium
- Cellular response to heat stress
- Anchoring of the basal body to the plasma membrane
- Cell Cycle, Mitotic
- eNOS activation
- Loss of proteins required for interphase microtubule organization from the centrosome
- Centrosome maturation
- Constitutive Signaling by EGFRvIII
|
- L-Glutamic Acid
- L-Proline
- \'5\'-O-(N-(L-Prolyl)-Sulfamoyl)Adenosine
- 5\'-O-(N-(L-Cysteinyl)-Sulfamoyl)Adenosine
- \'5\'-O-(N-(L-Alanyl)-Sulfamoyl)Adenosine
|
- Rifabutin
- Nedocromil
- 9-Butyl-8-(2,5-Dimethoxy-Benzyl)-9h-Purin-6-Ylamine
- Geldanamycin
- 8-(2-Chloro-3,4,5-Trimethoxy-Benzyl)-2-Fluoro-9-Pent-4-Ylnyl-9h-Purin-6-Ylamine
- 9-Butyl-8-(3,4,5-Trimethoxybenzyl)-9h-Purin-6-Amine
- 4-(1,3-Benzodioxol-5-Yl)-5-(5-Ethyl-2,4-Dihydroxyphenyl)-2h-Pyrazole-3-Carboxylic Acid
- 17-Dmag
- 8-(2,5-Dimethoxy-Benzyl)-2-Fluoro-9h-Purin-6-Ylamine
- 8-(2,5-Dimethoxy-Benzyl)-2-Fluoro-9-Pent-9h-Purin-6-Ylamine
- Adenosine-5\'-Diphosphate
- 9-Butyl-8-(2-Chloro-3,4,5-Trimethoxy-Benzyl)-9h-Purin-6-Ylamine
- 4-(1h-Imidazol-4-Yl)-3-(5-Ethyl-2,4-Dihydroxy-Phenyl)-1h-Pyrazole
- 9-Butyl-8-(3-Methoxybenzyl)-9h-Purin-6-Amine
- 9-Butyl-8-(4-Methoxybenzyl)-9h-Purin-6-Amine
- 9-Butyl-8-(2,5-Dimethoxy-Benzyl)-2-Fluoro-9h-Purin-6-Ylamine
- 8-Benzo[1,3]Dioxol-,5-Ylmethyl-9-Butyl-2-Fluoro-9h-Purin-6-Ylamine
- 8-(2-Chloro-3,4,5-Trimethoxy-Benzyl)-9-Pent-4-Ylnyl-9h-Purin-6-Ylamine
- N-[4-(AMINOSULFONYL)BENZYL]-5-(5-CHLORO-2,4-DIHYDROXYPHENYL)-1H-PYRAZOLE-4-CARBOXAMIDE
- N-(4-ACETYLPHENYL)-5-(5-CHLORO-2,4-DIHYDROXYPHENYL)-1H-PYRAZOLE-4-CARBOXAMIDE
- 4-CHLORO-6-(4-{4-[4-(METHYLSULFONYL)BENZYL]PIPERAZIN-1-YL}-1H-PYRAZOL-5-YL)BENZENE-1,3-DIOL
- 5-(5-CHLORO-2,4-DIHYDROXYPHENYL)-N-ETHYL-4-PIPERAZIN-1-YL-1H-PYRAZOLE-3-CARBOXAMIDE
- 5-(5-chloro-2,4-dihydroxyphenyl)-N-ethyl-4-[4-(morpholin-4-ylmethyl)phenyl]isoxazole-3-carboxamide
- 5-(5-CHLORO-2,4-DIHYDROXYPHENYL)-N-ETHYL-4-(4-METHOXYPHENYL)ISOXAZOLE-3-CARBOXAMIDE
- 2-amino-4-[2,4-dichloro-5-(2-pyrrolidin-1-ylethoxy)phenyl]-N-ethylthieno[2,3-d]pyrimidine-6-carboxamide
- 4-CHLORO-6-(4-PIPERAZIN-1-YL-1H-PYRAZOL-5-YL)BENZENE-1,3-DIOL
- (3E)-3-[(phenylamino)methylidene]dihydrofuran-2(3H)-one
- 6-(3-BROMO-2-NAPHTHYL)-1,3,5-TRIAZINE-2,4-DIAMINE
- 3-({2-[(2-AMINO-6-METHYLPYRIMIDIN-4-YL)ETHYNYL]BENZYL}AMINO)-1,3-OXAZOL-2(3H)-ONE
- N-[(2-AMINO-6-METHYLPYRIMIDIN-4-YL)METHYL]-3-{[(E)-(2-OXODIHYDROFURAN-3(2H)-YLIDENE)METHYL]AMINO}BENZENESULFONAMIDE
- 5-(5-CHLORO-2,4-DIHYDROXYPHENYL)-N-ETHYL-4-(4-METHOXYPHENYL)-1H-PYRAZOLE-3-CARBOXAMIDE
- 4-bromo-6-(6-hydroxy-1,2-benzisoxazol-3-yl)benzene-1,3-diol
- 4-[4-(2,3-DIHYDRO-1,4-BENZODIOXIN-6-YL)-3-METHYL-1H-PYRAZOL-5-YL]-6-ETHYLBENZENE-1,3-DIOL
- 4-chloro-6-{5-[(2-morpholin-4-ylethyl)amino]-1,2-benzisoxazol-3-yl}benzene-1,3-diol
- 8-(6-BROMO-BENZO[1,3]DIOXOL-5-YLSULFANYL)-9-(3-ISOPROPYLAMINO-PROPYL)-ADENINE
- 4-methyl-7,8-dihydro-5H-thiopyrano[4,3-d]pyrimidin-2-amine
- (5E,7S)-2-amino-7-(4-fluoro-2-pyridin-3-ylphenyl)-4-methyl-7,8-dihydroquinazolin-5(6H)-one oxime
- 8-BENZO[1,3]DIOXOL-,5-YLMETHYL-9-BUTYL-9H-
- 4-{[(2R)-2-(2-methylphenyl)pyrrolidin-1-yl]carbonyl}benzene-1,3-diol
- 2-(1H-pyrrol-1-ylcarbonyl)benzene-1,3,5-triol
- 2-[(2-methoxyethyl)amino]-4-(4-oxo-1,2,3,4-tetrahydro-9H-carbazol-9-yl)benzamide
- 4-(2-methoxyethoxy)-6-methylpyrimidin-2-amine
- 4-(2,4-dichlorophenyl)-5-phenyldiazenyl-pyrimidin-2-amine
- 3,6-DIAMINO-5-CYANO-4-(4-ETHOXYPHENYL)THIENO[2,3-B]PYRIDINE-2-CARBOXAMIDE
- 2-AMINO-4-(2,4-DICHLOROPHENYL)-N-ETHYLTHIENO[2,3-D]PYRIMIDINE-6-CARBOXAMIDE
|
|
|
ERBB2 and HSP90AA1 |
erb-b2 receptor tyrosine kinase 2 |
heat shock protein 90kDa alpha (cytosolic), class A member 1 |
- Signaling by the B Cell Receptor (BCR)
- Signaling by FGFR in disease
- Axon guidance
- PIP3 activates AKT signaling
- GRB7 events in ERBB2 signaling
- Signaling by EGFRvIII in Cancer
- PLCG1 events in ERBB2 signaling
- Signaling by SCF-KIT
- SHC1 events in ERBB2 signaling
- Downstream signaling events of B Cell Receptor (BCR)
- DAP12 signaling
- PI3K/AKT activation
- PI-3K cascade
- GRB2 events in ERBB2 signaling
- PI3K events in ERBB2 signaling
- Downstream signaling of activated FGFR
- Sema4D in semaphorin signaling
- Sema4D induced cell migration and growth-cone collapse
- Innate Immune System
- Signaling by PDGF
- Downregulation of ERBB2:ERBB3 signaling
- Signalling by NGF
- DAP12 interactions
- GAB1 signalosome
- Semaphorin interactions
- Signaling by Ligand-Responsive EGFR Variants in Cancer
- NGF signalling via TRKA from the plasma membrane
- Signaling by ERBB4
- Signaling by Overexpressed Wild-Type EGFR in Cancer
- Role of LAT2/NTAL/LAB on calcium mobilization
- Constitutive PI3K/AKT Signaling in Cancer
- PI3K events in ERBB4 signaling
- Signaling by FGFR
- Signaling by ERBB2
- Signaling by EGFR
- Downstream signal transduction
- Fc epsilon receptor (FCERI) signaling
- Signaling by EGFR in Cancer
- PI3K/AKT Signaling in Cancer
- Adaptive Immune System
|
- HSF1 activation
- Regulatory RNA pathways
- Signaling by EGFRvIII in Cancer
- Regulation of PLK1 Activity at G2/M Transition
- Influenza Life Cycle
- Influenza Viral RNA Transcription and Replication
- Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants
- Uptake and actions of bacterial toxins
- EPH-Ephrin signaling
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation
- Fcgamma receptor (FCGR) dependent phagocytosis
- Recruitment of mitotic centrosome proteins and complexes
- Regulation of actin dynamics for phagocytic cup formation
- vRNP Assembly
- Influenza Infection
- Signaling by ERBB2
- Signaling by VEGF
- Signaling by EGFR in Cancer
- Sema3A PAK dependent Axon repulsion
- Mitotic G2-G2/M phases
- Uptake and function of diphtheria toxin
- PIWI-interacting RNA (piRNA) biogenesis
- Organelle biogenesis and maintenance
- Axon guidance
- Attenuation phase
- G2/M Transition
- VEGFA-VEGFR2 Pathway
- HSF1-dependent transactivation
- EPHA-mediated growth cone collapse
- Metabolism of nitric oxide
- VEGFR2 mediated vascular permeability
- Loss of Nlp from mitotic centrosomes
- Scavenging by Class F Receptors
- eNOS activation and regulation
- Innate Immune System
- Semaphorin interactions
- Signaling by Ligand-Responsive EGFR Variants in Cancer
- Assembly of the primary cilium
- Cellular response to heat stress
- Anchoring of the basal body to the plasma membrane
- Cell Cycle, Mitotic
- eNOS activation
- Loss of proteins required for interphase microtubule organization from the centrosome
- Centrosome maturation
- Constitutive Signaling by EGFRvIII
|
- Trastuzumab
- Lapatinib
- ado-trastuzumab emtansine
- Pertuzumab
- Afatinib
|
- Rifabutin
- Nedocromil
- 9-Butyl-8-(2,5-Dimethoxy-Benzyl)-9h-Purin-6-Ylamine
- Geldanamycin
- 8-(2-Chloro-3,4,5-Trimethoxy-Benzyl)-2-Fluoro-9-Pent-4-Ylnyl-9h-Purin-6-Ylamine
- 9-Butyl-8-(3,4,5-Trimethoxybenzyl)-9h-Purin-6-Amine
- 4-(1,3-Benzodioxol-5-Yl)-5-(5-Ethyl-2,4-Dihydroxyphenyl)-2h-Pyrazole-3-Carboxylic Acid
- 17-Dmag
- 8-(2,5-Dimethoxy-Benzyl)-2-Fluoro-9h-Purin-6-Ylamine
- 8-(2,5-Dimethoxy-Benzyl)-2-Fluoro-9-Pent-9h-Purin-6-Ylamine
- Adenosine-5\'-Diphosphate
- 9-Butyl-8-(2-Chloro-3,4,5-Trimethoxy-Benzyl)-9h-Purin-6-Ylamine
- 4-(1h-Imidazol-4-Yl)-3-(5-Ethyl-2,4-Dihydroxy-Phenyl)-1h-Pyrazole
- 9-Butyl-8-(3-Methoxybenzyl)-9h-Purin-6-Amine
- 9-Butyl-8-(4-Methoxybenzyl)-9h-Purin-6-Amine
- 9-Butyl-8-(2,5-Dimethoxy-Benzyl)-2-Fluoro-9h-Purin-6-Ylamine
- 8-Benzo[1,3]Dioxol-,5-Ylmethyl-9-Butyl-2-Fluoro-9h-Purin-6-Ylamine
- 8-(2-Chloro-3,4,5-Trimethoxy-Benzyl)-9-Pent-4-Ylnyl-9h-Purin-6-Ylamine
- N-[4-(AMINOSULFONYL)BENZYL]-5-(5-CHLORO-2,4-DIHYDROXYPHENYL)-1H-PYRAZOLE-4-CARBOXAMIDE
- N-(4-ACETYLPHENYL)-5-(5-CHLORO-2,4-DIHYDROXYPHENYL)-1H-PYRAZOLE-4-CARBOXAMIDE
- 4-CHLORO-6-(4-{4-[4-(METHYLSULFONYL)BENZYL]PIPERAZIN-1-YL}-1H-PYRAZOL-5-YL)BENZENE-1,3-DIOL
- 5-(5-CHLORO-2,4-DIHYDROXYPHENYL)-N-ETHYL-4-PIPERAZIN-1-YL-1H-PYRAZOLE-3-CARBOXAMIDE
- 5-(5-chloro-2,4-dihydroxyphenyl)-N-ethyl-4-[4-(morpholin-4-ylmethyl)phenyl]isoxazole-3-carboxamide
- 5-(5-CHLORO-2,4-DIHYDROXYPHENYL)-N-ETHYL-4-(4-METHOXYPHENYL)ISOXAZOLE-3-CARBOXAMIDE
- 2-amino-4-[2,4-dichloro-5-(2-pyrrolidin-1-ylethoxy)phenyl]-N-ethylthieno[2,3-d]pyrimidine-6-carboxamide
- 4-CHLORO-6-(4-PIPERAZIN-1-YL-1H-PYRAZOL-5-YL)BENZENE-1,3-DIOL
- (3E)-3-[(phenylamino)methylidene]dihydrofuran-2(3H)-one
- 6-(3-BROMO-2-NAPHTHYL)-1,3,5-TRIAZINE-2,4-DIAMINE
- 3-({2-[(2-AMINO-6-METHYLPYRIMIDIN-4-YL)ETHYNYL]BENZYL}AMINO)-1,3-OXAZOL-2(3H)-ONE
- N-[(2-AMINO-6-METHYLPYRIMIDIN-4-YL)METHYL]-3-{[(E)-(2-OXODIHYDROFURAN-3(2H)-YLIDENE)METHYL]AMINO}BENZENESULFONAMIDE
- 5-(5-CHLORO-2,4-DIHYDROXYPHENYL)-N-ETHYL-4-(4-METHOXYPHENYL)-1H-PYRAZOLE-3-CARBOXAMIDE
- 4-bromo-6-(6-hydroxy-1,2-benzisoxazol-3-yl)benzene-1,3-diol
- 4-[4-(2,3-DIHYDRO-1,4-BENZODIOXIN-6-YL)-3-METHYL-1H-PYRAZOL-5-YL]-6-ETHYLBENZENE-1,3-DIOL
- 4-chloro-6-{5-[(2-morpholin-4-ylethyl)amino]-1,2-benzisoxazol-3-yl}benzene-1,3-diol
- 8-(6-BROMO-BENZO[1,3]DIOXOL-5-YLSULFANYL)-9-(3-ISOPROPYLAMINO-PROPYL)-ADENINE
- 4-methyl-7,8-dihydro-5H-thiopyrano[4,3-d]pyrimidin-2-amine
- (5E,7S)-2-amino-7-(4-fluoro-2-pyridin-3-ylphenyl)-4-methyl-7,8-dihydroquinazolin-5(6H)-one oxime
- 8-BENZO[1,3]DIOXOL-,5-YLMETHYL-9-BUTYL-9H-
- 4-{[(2R)-2-(2-methylphenyl)pyrrolidin-1-yl]carbonyl}benzene-1,3-diol
- 2-(1H-pyrrol-1-ylcarbonyl)benzene-1,3,5-triol
- 2-[(2-methoxyethyl)amino]-4-(4-oxo-1,2,3,4-tetrahydro-9H-carbazol-9-yl)benzamide
- 4-(2-methoxyethoxy)-6-methylpyrimidin-2-amine
- 4-(2,4-dichlorophenyl)-5-phenyldiazenyl-pyrimidin-2-amine
- 3,6-DIAMINO-5-CYANO-4-(4-ETHOXYPHENYL)THIENO[2,3-B]PYRIDINE-2-CARBOXAMIDE
- 2-AMINO-4-(2,4-DICHLOROPHENYL)-N-ETHYLTHIENO[2,3-D]PYRIMIDINE-6-CARBOXAMIDE
|
|
|
ERCC5 and POLR2A |
excision repair cross-complementation group 5 |
polymerase (RNA) II (DNA directed) polypeptide A, 220kDa |
- Nucleotide Excision Repair
- Global Genomic NER (GG-NER)
- Transcription-coupled NER (TC-NER)
- Formation of incision complex in GG-NER
- Formation of transcription-coupled NER (TC-NER) repair complex
- Dual incision reaction in GG-NER
- Dual incision reaction in TC-NER
|
- RNA Polymerase II Promoter Escape
- mRNA Splicing
- Formation of HIV-1 elongation complex containing HIV-1 Tat
- PIWI-interacting RNA (piRNA) biogenesis
- Nucleotide Excision Repair
- RNA Polymerase II Transcription Pre-Initiation And Promoter Opening
- RNA Polymerase II Transcription
- Abortive elongation of HIV-1 transcript in the absence of Tat
- HIV Infection
- Regulatory RNA pathways
- Formation of the Early Elongation Complex
- Tat-mediated elongation of the HIV-1 transcript
- Tat-mediated HIV elongation arrest and recovery
- Formation of transcription-coupled NER (TC-NER) repair complex
- RNA Pol II CTD phosphorylation and interaction with CE
- RNA Polymerase II Pre-transcription Events
- Dual incision reaction in TC-NER
- Influenza Life Cycle
- HIV elongation arrest and recovery
- HIV Life Cycle
- HIV Transcription Initiation
- Influenza Viral RNA Transcription and Replication
- RNA Pol II CTD phosphorylation and interaction with CE
- Transcriptional regulation of pluripotent stem cells
- RNA Polymerase II HIV Promoter Escape
- HIV Transcription Elongation
- POU5F1 (OCT4), SOX2, NANOG activate genes related to proliferation
- Transcriptional regulation by small RNAs
- Processing of Capped Intron-Containing Pre-mRNA
- mRNA Capping
- mRNA Splicing - Minor Pathway
- mRNA Splicing - Major Pathway
- MicroRNA (miRNA) biogenesis
- Influenza Infection
- Pausing and recovery of Tat-mediated HIV elongation
- Late Phase of HIV Life Cycle
- Formation of RNA Pol II elongation complex
- RNA Polymerase II Transcription Initiation And Promoter Clearance
- Pausing and recovery of HIV elongation
- Formation of HIV elongation complex in the absence of HIV Tat
- Transcription-coupled NER (TC-NER)
- Viral Messenger RNA Synthesis
- Formation of the HIV-1 Early Elongation Complex
- RNA Polymerase II Transcription Initiation
- Transcription of the HIV genome
- RNA Polymerase II Transcription Elongation
|
|
|
|
|